03-Mai-2011 Omar SADIK

Corrigé du concours communs polytechniques 2011-Filière MP

EXERCICE 1

Q1. Soit
$$n \in \mathbb{N}$$
 et $n \geqslant 2$. $\frac{2}{(n+1)^2 - 1} \frac{n^2 - 1}{2} \xrightarrow[n \to +\infty]{} 0$, donc $R = 1$.

Q2. On a
$$\forall n \in \mathbb{N}$$
 et $n \ge 2$, $\frac{2}{n^2 - 1} = \frac{1}{n - 1} - \frac{1}{n + 1}$. Les séries $\sum_{n \ge 2} \frac{1}{n - 1} x^n$, et $\sum_{n \ge 2} \frac{1}{n + 1} x^n$ ont pour rayon de convergence $R = 1$. Soit $x \in]-1, 1[\setminus \{0\} \text{ on a}:$

$$S(x) = \sum_{n=2}^{+\infty} \frac{2}{n^2 - 1} x^n$$

$$= \sum_{n=2}^{+\infty} \frac{1}{n - 1} x^n - \sum_{n=2}^{+\infty} \frac{1}{n + 1} x^n$$

$$= \sum_{n=2}^{+\infty} \frac{1}{n - 1} x^n - \sum_{n=2}^{+\infty} \frac{1}{n + 1} x^n$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n} x^{n+1} - \sum_{n=3}^{+\infty} \frac{1}{n} x^{n-1}$$

$$= -x \ln(1 - x) - \frac{1}{x} \sum_{n=3}^{+\infty} \frac{1}{n} x^n$$

$$= -x \ln(1 - x) - \frac{1}{x} (-\ln(1 - x) - x - \frac{x^2}{2})$$

$$= \left(\frac{1}{x} - x\right) \ln(1 - x) + x + \frac{x^2}{2}$$

Et pour x = 0, on a S(0) = 0.

$$\boxed{\textbf{Q3.}} \ \forall x \in]-1,1[\setminus \{0\},S(x) = \left(\frac{1}{x}-x\right)\ln(1-x) + x + \frac{x^2}{2} = \frac{1+x}{x}(1-x)\ln(1-x) + x + \frac{x^2}{2} \xrightarrow[x \to 1]{} \frac{3}{2}.$$

 $\mathbf{Remarque}, \, \mathsf{La} \, \mathsf{s\'erie} \, \sum_{n \geqslant 2} \frac{2}{n^2 - 1} x^n, \, \mathsf{converge} \, \mathsf{normalement} \, \mathsf{sur} \, [-1, 1], \, \mathsf{car} \, \mathsf{la} \, \mathsf{s\'erie} \, \sum_{n \geqslant 2} \frac{2}{n^2 - 1} \, \mathsf{est} \, \mathsf{convergente},$

$$\operatorname{donc} \lim_{x \to 1} \sum_{n=2}^{+\infty} \frac{2}{n^2 - 1} x^n = \sum_{n=2}^{+\infty} \frac{2}{n^2 - 1}, \operatorname{conclusion} : \sum_{n=2}^{+\infty} \frac{2}{n^2 - 1} = \frac{3}{2}.$$

EXERCICE 2

- Q1.) Les applications $x \longmapsto 2x, x \longmapsto -3$ sont continues sur $]0, +\infty[$, de plus $\forall x \in]0, +\infty[$, $2x \neq 0$, donc si S_H désigne l'ensemble des solutions de 2xy' 3y = 0, alors $S_H = \left\{x \longmapsto \lambda x^{\frac{3}{2}} / \lambda \in \mathbb{R}\right\}$. La méthode de la variation de la constante donne $\lambda'(x) = \frac{1}{2x^2}$, on prend $\lambda(x) = \frac{-1}{2x}$, ainsi l'ensemble des solutions de E sur $]0, +\infty[$ est $\left\{x \longmapsto \lambda x^{\frac{3}{2}} \frac{\sqrt{x}}{2} / \lambda \in \mathbb{R}\right\}$.
- Q2. Si y est solution de E sur $[0, +\infty[$, alors $\exists \lambda \in \mathbb{R}$ tel que $\forall x \in]0, +\infty[$, $y(x) = \lambda x^{\frac{3}{2}} \frac{\sqrt{x}}{2}$ La fonction y est solution de E sur $[0, +\infty[$, donc en particulier elle sera dérivable en 0, et $x \longmapsto \sqrt{x}$ ne l'est pas en 0 à droite, donc l'ensemble des solutions sur $[0, +\infty[$ est vide.

PROBLÈME

Remarque : Pour ne pas confondre l'ensemble F et la fonction F, de préférence on désigne par G la fonction définie par $G(x) = \int_{0}^{+\infty} f(t) dt$. cela étant.

Q1. Questions préliminaire

- a/ Si f est positive sur $[a, +\infty[$ alors il y'a équivalence entre les propositions (i) et (ii).
- \mathbf{b} / Si non $(i) \Longrightarrow (ii)$ seulement. Pour plus de détail voir la question 10) a) et b).

PARTIE I : Exemples et propriétés

- Q2. a/ Tout d'abord $E \subset \mathcal{F}(\mathbb{R}^+, \mathbb{R})$.
 - l'application $t \longmapsto 0$ est un élément de E, donc $E \neq \emptyset$.
 - Soient $(f, g, \lambda) \in \mathcal{F}(\mathbb{R}^+, \mathbb{R})^2 \times \mathbb{R}$ et x > 0 alors $t \longmapsto f(t) + \lambda g(t)$ est continue sur \mathbb{R}^+ de plus $\forall t \in \mathbb{R}^+, |f(t)e^{-xt} + \lambda g(t)e^{-xt}| \leq |f(t)e^{-xt}| + |\lambda||g(t)e^{-xt}|$, et $t \longmapsto |f(t)e^{-xt}| + |\lambda||g(t)e^{-xt}|$ est intégrable sur \mathbb{R}^+ , par comparaison $x \longmapsto f(t)e^{-xt} + \lambda g(t)e^{-xt}$ l'est aussi sur \mathbb{R}^+ . Donc $f + \lambda g \in E$.
 - $\mathbf{b}/ \bullet \text{Il est \'evident que } F \subset E \text{ car } t \longmapsto \mathbf{e}^{-xt} \text{ est int\'egrable sur } \mathbb{R}^+.$
 - L'application $x \mapsto 0$ est un élément de F, donc $F \neq \emptyset$.
 - Soient $(f, g, \lambda) \in F^2 \times \mathbb{R}$, $\exists M_1, M_2$ telles que $\forall x \in \mathbb{R}^+$; $|f(x)| \leq M_1$ et $|g(x)| \leq M_2$, donc $\forall x \in \mathbb{R}^+$; $|f(x) + \lambda g(x)| \leq M_1 + |\lambda| M_2$ et $f + \lambda g$ est continue sur \mathbb{R}^+ , donc $f + \lambda g \in F$.
 - c/ Soit $f \in E$, montrons que $\mathcal{L}(f) \in \mathcal{F}(\mathbb{R}_+^*, \mathbb{R})$, soit donc x > 0 l'application $t \longmapsto f(t)\mathrm{e}^{-xt}$ est intégrable sur \mathbb{R}^+ , donc l'intégrale $\int_0^{+\infty} f(t)\mathrm{e}^{-xt}\mathrm{d}t$ est convergente, ainsi $\mathcal{L}(f)$ est une application de \mathbb{R}_+^* dans \mathbb{R} .

La linéarité de \mathcal{L} est évidente.

- $egin{array}{c} \mathbf{Q3.} \ \ \mathrm{a/} \ \ orall x>0, \mathcal{L}(\mathcal{U})(x)=rac{1}{x}. \end{array}$
 - $\mathbf{b}/\ \mathbf{h}_{\lambda}$ est continue sur \mathbb{R}^+ .
 - $\forall x > 0$; $e^{-(x+\lambda)t} = o\left(\frac{1}{t^2}\right)$ et $t \longmapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$ et en 0 la fonction $t \to e^{-(x+\lambda)t}$ est continue [0, 1] donc $h_{\lambda} \in E$, de plus $\mathcal{L}(h_{\lambda})(x) = \frac{1}{x+\lambda}$.
- $\boxed{\textbf{Q4.}} \text{ Soit } n \in \mathbb{N}, \text{ et } x > 0, \ t^n \mathrm{e}^{-\frac{xt}{2}} \xrightarrow[t \to +\infty]{} 0, \text{ donc } \exists A > 0, \forall t \geqslant A; \ t^n \mathrm{e}^{-\frac{xt}{2}} \leqslant 1, \text{ donc } t^n \mathrm{e}^{-xt} \leqslant \mathrm{e}^{-\frac{xt}{2}}.$
 - g_n est continue sur \mathbb{R}^+ .
 - On a $\frac{x}{2} > 0$, et $f \in E$, donc $t \longmapsto f(t)e^{-\frac{xt}{2}}$ est intégrable sur \mathbb{R}^+ , par comparaison l'application $t \longmapsto t^n e^{-xt} f(t) = g_n(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ donc $g_n \in E$.
- Q5. Transformée de Laplace d'une dérivée f est croissante et de classe \mathcal{C}^1 sur $[0, +\infty[$, donc $f' \geqslant 0$ sur $[0, +\infty[$, donc pour montrer que $f' \in E$, il suffit de montrer que $A \longmapsto \int_0^A f'(t) \mathrm{e}^{-xt} \mathrm{d}t$ admet une limite finie en $+\infty$.

Soit $A \ge 0$ et x > 0, $\int_0^A f'(t) e^{-xt} dt = f(A) e^{-xA} - f(0) + x \int_0^A f(t) e^{-xt} dt$.

L'application $A \longmapsto \int_0^A f(t) \mathrm{e}^{-xt} \mathrm{d}t$ admet une limite finie quand $A \to +\infty$ car $f \in E$ et f est bornée sur \mathbb{R}^+ donc $f(A) \mathrm{e}^{-xA} \xrightarrow[A \to +\infty]{} 0$ par suite $\mathcal{L}(f')(x) = x\mathcal{L}(f)(x) - f(0)$.

- [Q6.] Régularité d'une transformée de Laplace
 - $\mathrm{a}/\ \mathrm{Soit}\ x>0, \mathcal{L}(f)(x)=\int_0^{+\infty}f(t)\mathrm{e}^{-xt}\mathrm{d}t, \, \mathrm{posons}\ g:\mathbb{R}_+^*\times\mathbb{R}^+\longrightarrow\mathbb{R}\, ; \, (x,t)\longmapsto f(t)\mathrm{e}^{-xt}.$
 - $\forall x > 0$; $t \longmapsto g(x,t)$ continue et intégrable sur \mathbb{R}^+ car $f \in E$.
 - $\forall t \geq 0$; $x \longmapsto g(x,t)$ est de classe \mathcal{C}^1 sur $]0,+\infty[$, de plus $\frac{\partial g}{\partial x}(x,t) = -tf(t)e^{-xt} = -g_1(t)e^{-xt}$, or $g_1 \in E$, donc $x \longmapsto \frac{\partial g}{\partial x}(x,t)$ est intégrable sur \mathbb{R}^+ .
 - Soit $\alpha > 0$. On a $\forall x \in [\alpha, +\infty[; \forall t \geq 0; \quad \left| \frac{\partial g}{\partial x}(x, t) \right| \leq |tf(t)e^{-\alpha t}|$, et $t \longmapsto tf(t)e^{-\alpha t} = g_1(t)e^{-\alpha t}$ est intégrable sur \mathbb{R}^+ .

Conclusion : $\mathcal{L}(f)$ est de classe \mathcal{C}^1 sur $]0, +\infty[$ et $\mathcal{L}(f)' = -\mathcal{L}(g_1)$.

b/ Soit $n \in \mathbb{N}^*$ et P_n la propriété suivante : $\mathcal{L}(f)$ est de classe \mathcal{C}^n sur $]0, +\infty[$ et $\mathcal{L}(f)^{(n)} = (-1)^n \mathcal{L}(g_n)$. Montrons P_n par récurrence : Pour n = 1 c'est la question 6 a). Soit $n \in \mathbb{N}^*$, supposons que la propriété est vraie à l'ordre n, montrons la propriété P_{n+1} . Puisque $g_n \in E$ en appliquant 6 a) $\mathcal{L}(g_n)$ est de classe \mathcal{C}^1 sur $]0, +\infty[$, donc $\mathcal{L}(f)^{(n)}$ est de classe \mathcal{C}^1 sur $]0, +\infty[$ et $\mathcal{L}(f)^{(n+1)} = -(-1)^n \mathcal{L}(f_n)$ où $f_n : t \longmapsto tg_n(t) = t^{n+1}f(t) = g_{n+1}(t)$ et le résultat en découle, et $\forall x > 0$; $\mathcal{L}(f)^{(n)}(x) = (-1)^n \mathcal{L}(g_n)(x)$.

PARTIE II : Comportements asymptotiques de la transformée de Laplace

- $\boxed{\mathbf{Q7.}} \quad \text{a/} \quad \text{Soit } M > 0 \text{ tel que } \forall t \in \mathbb{R}^+, \ |f(t)| \leqslant M, \ \text{donc } \forall x > 0, |\mathcal{L}(f)(x)| \leqslant \frac{M}{x} \xrightarrow[x \to +\infty]{} 0, \ \text{donc } \lim_{x \to +\infty} \mathcal{L}(f)(x) = 0.$
 - b/ f' est bornée et continue sur \mathbb{R}^+ donc $f' \in F$, de la question précédente, on en déduit que $\lim_{x \to +\infty} \mathcal{L}(f')(x) = 0$. $f \in F$, donc bornée et de classe \mathcal{C}^1 et croissante sur \mathbb{R}^+ , on peut appliquer la question 5) puisque

 $f \in F$, donc bornée et de classe \mathcal{C}^1 et croissante sur \mathbb{R}^+ , on peut appliquer la question 5) puisque $F \subset E$, par suite $\lim_{x \to +\infty} x \mathcal{L}(f)(x) = f(0)$.

Q8. Théorème de la valeur finale

- $\mathbf{a}/\bullet \mathbf{f}$ est continue sur \mathbb{R}^+ .
 - $\exists A>0$ tel que $\forall t\geqslant A$; $|f(t)-\ell|\leqslant 1$, donc f est bornée sur $[A,+\infty[$, f est continue sur [0,A] qui est compact donc f est bornée aussi sur [0,A] si on pose $M_1=\sup_{[A,+\infty[}|f(t)|$ et $M_2=\sup_{[0,A]}|f(t)|$ et $M=\max(M_1,M_2)$ alors $\forall t\in\mathbb{R}^+; |f(t)|\leqslant M$. Ainsi $f\in F$.
- b/ Le changement $a_n t = x$ de variable dans l'intégrale $\int_0^{+\infty} h_n(t) dt$ et le fait que $\forall n \in \mathbb{N}; \ a_n \geqslant 0$ donne le résultat.
- $\mathbf{c}/\quad \bullet \lim_{n \to +\infty} h_n(t) = \mathbf{e}^{-x} \ell \operatorname{car} \frac{x}{a_n} \xrightarrow[n \to +\infty]{} +\infty \text{ et } \lim_{t \to +\infty} f(t) = \ell$
 - L'application $x \longmapsto e^{-x}\ell$ est intégrable sur \mathbb{R}^+ .
 - De la question précédente f est bornée sur \mathbb{R}^+ , donc $\exists M > 0$ tel que $\forall t \in \mathbb{R}^+$; $|f(t)| \leq M$, ainsi $\forall x \in \mathbb{R}^+$; $|h_n(x)| \leq M e^{-x}$, et l'application $t \longmapsto M e^{-x}$ est intégrable sur \mathbb{R}^+ .
 - On peut appliquer le théorème de convergence dominée et $\lim_{n \to +\infty} \int_0^{+\infty} h_n(t) dt = \int_0^{+\infty} \lim_{n \to +\infty} h_n(t) dt = \ell$.
- d/ La suite $(a_n \mathcal{L}(f)(a_n))_n$ admet une limite en $0 \in \overline{]0, +\infty[}$ et ceci pour toute suite $(a_n)_n$ qui converge vers 0, alors de la caractérisation séquentielle de la limite, l'application $x \longmapsto x\mathcal{L}(f)(x)$ admet une limite en 0 et $\lim_{x\to 0^+} \mathcal{L}(f)(x) = \lim_{n\to +\infty} a_n \mathcal{L}(f)(a_n) = \ell$.

Si $\ell \neq 0$, alors $x\mathcal{L}(f)(x) \underset{x \to 0^+}{\sim} \ell$, ainsi $\mathcal{L}(f)(x) \underset{x \to 0^+}{\sim} \frac{\ell}{x}$.

Q9. a/ On a $\forall x \in \mathbb{R}^+$; $R(x) = \int_1^{+\infty} f(t) dt - \int_1^x f(t) dt$, f étant continue donc R est de classe \mathcal{C}^1 sur \mathbb{R}^+ et $\forall x \in \mathbb{R}^+$; R'(x) = -f(x). De plus $\lim_{x \to +\infty} R(x) = 0$ donc R est bornée sur \mathbb{R}^+ et $R \in F \subset E$.

Soit
$$x > 0$$
, $\mathcal{L}(f)(x) = \int_0^{+\infty} f(t)e^{-xt}dt = -\int_0^{+\infty} R'(t)e^{-xt}dt$.
Si $B > 0$, alors $\int_0^B R'(t)e^{-xt}dt = R(B)e^{-xB} - R(0) + x \int_0^B R(t)e^{-xt}dt \xrightarrow{B \to +\infty} -R(0) + x \int_0^{+\infty} R(t)e^{-xt}dt$

D'où
$$\forall x>0;~\mathcal{L}(f)(x)=R(0)-x\int_0^{+\infty}R(t)\mathrm{e}^{-xt}\mathrm{d}t=R(0)-x\mathcal{L}(R)(x)$$

 $\mathrm{b}/ \ \text{ On a } \lim_{x \to +\infty} R(x) = 0 \text{, donc } \exists A > 0 \text{ tel que } \forall t \geqslant A, \, |R(t)| \leqslant \varepsilon.$

Soit x > 0.

$$\begin{split} |\mathcal{L}(f)(x) - R(0)| &= |x\mathcal{L}(R)(x)| \\ &\leqslant x \int_0^A |R(t)| \mathrm{e}^{-xt} \mathrm{d}t + x \int_A^{+\infty} |R(t)| \mathrm{e}^{-xt} \mathrm{d}t \\ &\leqslant x \int_0^A |R(t)| \mathrm{d}t + x\varepsilon \int_0^{+\infty} \mathrm{e}^{-xt} \mathrm{d}t \\ &\leqslant x \int_0^A |R(t)| \mathrm{d}t + \varepsilon \end{split}$$

- $\mathsf{c}/ \ \exists \alpha > 0, \, \forall x \in]-\alpha, \alpha[\,;\, x \int_0^A |R(t)| \mathrm{d}t \leqslant \varepsilon. \, \mathrm{donc} \, \forall x \in]-\alpha, \alpha[\,;\, |\mathcal{L}(f)(x)-R(0)| \leqslant 2\varepsilon. \, \mathrm{ainsi} \\ \mathcal{L}(f) \text{ se prolonge par continuit\'e en } 0 \text{ et } \lim_{x \to 0^+} \mathcal{L}(f)(x) = R(0).$
- Q10. a/ En prenant $x \mapsto 1 \cos x$ comme primitive de $\sin \operatorname{sur} \mathbb{R}$ alors, posons $G(x) = \int_0^x f(t) dt$, f est continue $\operatorname{sur} \mathbb{R}^+$, de plus

$$G(x) = \left[\frac{1-\cos t}{t}\right]_0^x + \int_0^x \frac{1-\cos t}{t^2} dt$$
$$= \frac{1-\cos x}{x} + \int_0^x \frac{1-\cos t}{t^2} dt$$

La fonction $t \longmapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$ et $t \longmapsto 1 - \cos t$ est bornée sur $[1, +\infty[$, de plus $t \longmapsto \frac{1-\cos t}{t^2}$ est prolongeable par continuité en 0, donc $t \longmapsto \frac{1-\cos t}{t^2}$ est intégrable sur \mathbb{R}^+ , par conséquent G admet une limite $\ell \in \mathbb{R}$ en $+\infty$ et $\lim_{x \to +\infty} G(x) = \int_0^{+\infty} \frac{1-\cos t}{t^2} dt$.

 $\mathbf{b}/\;$ Le changement de variable $t=n\pi+u,$ donne :

$$\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt = \int_{0}^{\pi} \frac{|\sin u|}{u + n\pi} du$$

$$\geqslant \frac{1}{(n+1)\pi} \int_{0}^{\pi} \sin u du$$

$$\geqslant \frac{2}{(n+1)\pi}$$

La série $\sum_{n\geqslant 0} \frac{2}{(n+1)\pi}$ est divergente, donc la série $\sum_{n\geqslant 0} u_n$ aussi, par suite l'intégrale $\int_0^{+\infty} \frac{|\sin t|}{t} dt = \int_0^{+\infty} \frac{(n+1)\pi}{t} dt$

 $\sum_{n=0}^{+\infty} \int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt$ est divergente. Alors la fonction f n'est pas intégrable sur \mathbb{R}^+ .

 $\mathbf{c}/$

$$\begin{split} \int_0^X (\sin t) \mathrm{e}^{-xt} \mathrm{d}t &= \mathrm{Im} \int_0^X \mathrm{e}^{\mathrm{i}t} \mathrm{e}^{-xt} \mathrm{d}t \\ &= \mathrm{Im} \int_0^X \mathrm{e}^{(\mathrm{i}-x)t} \mathrm{d}t \\ &= \mathrm{Im} \frac{1}{\mathrm{i}-x} \left(\mathrm{e}^{(\mathrm{i}-x)X} - 1 \right) \\ &= \frac{-1}{1+x^2} \left(\mathrm{e}^{-xX} (x \sin X + \cos X) - 1 \right) \end{split}$$

 $\forall x > 0, \forall t \in \mathbb{R}^+; |(\sin t)e^{-xt}| \leqslant e^{-xt} \text{ et } e^{-xt} = o\left(\frac{1}{t^2}\right), \text{ par comparaison } t \longmapsto (\sin t)e^{-xt}$ qui est continue en 0 est intégrable sur \mathbb{R}^+ . De plus en faisant tendre X vers $+\infty$ dans la formule précédente on obtient : $\int_0^{+\infty} (\sin t)e^{-xt} dt = \frac{1}{1+x^2}$

De la question 6) $\mathcal{L}(f)$ est de classe \mathcal{C}^1 sur $]0, +\infty[$ et $\mathcal{L}(f)' = -\mathcal{L}(g_1)$.

Soit
$$x > 0$$
, $\mathcal{L}(f)'(x) = -\int_0^{+\infty} t \frac{\sin t}{t} e^{-xt} dt = -\frac{1}{1+x^2}$

Alors $\exists \lambda \in \mathbb{R}$ tel que $\forall x > 0$, $\mathcal{L}(f)(x) = \lambda - \arctan x$

 $\text{La question 7) donne} \lim_{x \to +\infty} \mathcal{L}(f)(x) = 0, \text{ donc } \lambda = \frac{\pi}{2}, \text{ d'où } \forall x > 0, \mathcal{L}(f)(x) = \frac{\pi}{2} - \arctan x = \arctan\left(\frac{1}{x}\right).$

De la question 9) on a montrer que si f est intégrable sur \mathbb{R}^+ , alors $\lim_{x\to 0} \mathcal{L}(f)(x) = R(0) = \int_0^{+\infty} f(t) dt = \ell$,

D'après la question 10.b) fonction f n'est pas intégrable sur \mathbb{R}^+ , donc on ne peut pas appliquer le résultat de 9.

Mais dans la démonstration de 9. on a utiliser seulement le fait que $\lim_{x\to +\infty} \int_0^x f(t)dt = \ell \in \mathbb{R}$ et ceci est vrai ici même si f n'est pas intégrable.

Donc
$$\lim_{x\to 0^+} \mathcal{L}(f)(x) = \ell$$
, or $\lim_{x\to 0^+} \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$, donc $\int_0^{+\infty} \frac{\sin x}{x} = \frac{\pi}{2}$.

FIN DE L'ÉPREUVE

Lycée technique TAZA