Durin Jean Pierre 6 Allée des Lauriers 71250 CLUNY.

Corrigé de l'épreuve

Tél: 03.85.59.16.48.

Banque PT: MATHS II-B.

I. Préliminaires

1°) Par définition $||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$ d'après les propriétés de bilinéarité et de symétrie d'un produit scalaire. Cette égalité peut s'écrire :

$$\forall (x, y) \in E^2$$
, $2\langle x, y \rangle = ||x + y||^2 - ||x||^2 - ||y||^2$.

2°) **a**) <u>Inégalité de Cauchy-Schwarz</u> :

 $\|\lambda x + y\|^2 = \langle \lambda x + y, \lambda x + y \rangle = \lambda^2 \langle x, x \rangle + 2\lambda \langle x, y \rangle + \langle y, y \rangle = \lambda^2 \|x\|^2 + 2\lambda \langle x, y \rangle + \|y\|^2$ est une fonction polynome du deuxième degré en λ qui garde un signe constant positif, quand λ parcourt R.. Le discriminant réduit $\Delta' = \langle x, y \rangle^2 - \|x\|^2 \|y\|^2$ est donc négatif ou nul d' où :

$$\forall (x, y) \in E^2$$
, $|\langle x, y \rangle| \le ||x|| ||y||$.

b) <u>Cas d'égalité</u>

Supposons que $|\langle x,y\rangle| \leq \|x\| \|y\|$, alors $\Delta'=0$ et l'équation du deuxième degré en λ admet donc une racine double λ_0 et ainsi $\|\lambda_0 x + y\|^2 = 0$, ce qui n'est possible qu'à condition que $\lambda_0 x + y = 0_E$, autrement dit que $\{x,y\}$ est une famille liée.

c) L' application définie $\sup [C^0([0,a],R)]^2$ par $(f,g) \to \int_0^a f(t) g(t) dt$ est un produit scalaire : Symétrie d' après la commutativité du produit des fonctions.

Bilinéarité d'après la distributivité de la multiplication par rapport à l'addition dans $C^0([0,a],R)$ et la linéarité de l'intégrale.

La forme quadratique associée est définie positive.

Positivité $\int_0^a (f(t))^2 dt \ge 0$ car a > 0 et $(f(t))^2 \ge 0$ sur [0, a].

Caractère défini: Supposons $\int_0^a (f(t))^2 dt = 0$. Comme f^2 est une fonction <u>continue</u> et <u>positive</u> sur [0,a], si elle n' était pas identiquement nulle sur [0,a], son intégrale serait <u>strictement positive</u>. Comme son intégrale est nulle c' est qu' elle est identiquement nulle sur [0,a]. cqfd.

Dès lors, l'inégalité de Cauchy-Schwarz vue précédemment s'écrit:

$$\left| \int_0^a f(t) g(t) dt \right| \leq \sqrt{\left(\int_0^a f^2(t) dt \right) \left(\int_0^a g^2(t) dt \right)}.$$

 3°) Soit E espace vectoriel sur R.

Soit N une application de E dans R⁺ vérifiant $\forall x \in E$, N(x) = N(-x).

On pose $\varphi(x, y) = \frac{1}{2} (N^2(x+y) - N^2(x) - N^2(y))$ et on suppose que φ est un produit scalaire sur E.

Vérifions $N(0_E) = 0$. En effet, $\forall x \in E$, $\varphi(x, -x) = \frac{1}{2} \left(N^2(0_E) - 2N^2(x) \right)$ soit sous une autre forme : $\forall x \in E$, $N^2(0_E) = -2\varphi(x, x) + 2N^2(x)$ de sorte qu' en faisant $x = 0_E$ dans cette égalité, on obtient, puisque $\varphi(0_E, 0_E) = 0$: $N^2(0_E) = 2N^2(0_E)$ et donc $N(0_E) = 0$.

La norme euclidienne associée à φ est définie par $||x|| = \sqrt{\varphi(x,x)}$

Or on a d'après le calcul précédent $\forall x \in E$, $N^2(0_E) = -2\varphi(x,x) + 2N^2(x) = 0$ soit $\forall x \in E$, $\varphi(x,x) = N^2(x)$ et donc finalement $\forall x \in E$, $\sqrt{\varphi(x,x)} = N(x)$. cqfd.

II. Equivalence de normes

1°) Rappelons qu' une fonction continue sur un segment est bornée et atteint ses bornes. Par suite :

$$\exists x_0 \in [0,1]; \ \inf_{x \in [0,1]} p(x) = p(x_0) = p_0 > 0 \ . \ \exists x_1 \in [0,1]; \ \sup_{x \in [0,1]} p(x) = p(x_1) = p_1 > 0 \ .$$

On en déduit : $\forall x \in [0,1], \ 0 < p_0 \le p(x) \le p_1$

De même pour la fonction q, $\exists x_1 \in [0,1]$; $\sup_{x \in [0,1]} q(x) = q(x_1) = q_1 \ge 0$ et on a :

$$\forall x \in [0,1], \quad 0 \le q(x) \le q_1.$$

- **2°**) $H = \{ u \in C^1([0,1], R); u(0) = u(1) = 0 \}$. On pose pour $(u, v) \in H^2$: $\langle u, v \rangle = \int_0^1 (u(t) v(t) + u'(t) v'(t)) dt$; $b(u, v) = \int_0^1 (q(t) u(t) v(t) + p(t) u'(t) v'(t)) dt$ et $L(v) = \int_0^1 f(t) v(t) dt$.
 - a) H est évidemment un espace vectoriel, c' est un sous espace $dC^1([0,1], R)$. $L(v) \in R$ et le caractère linéaire de L est assuré par la distributivité de la multiplication par rapport à l'addition $dansC^0([0,1], R)$ et la linéarité de l'intégrale.
 - **b**) $(u,v) \rightarrow \langle u,v \rangle$ est un produit scalaire sur H. Je ne redétaille pas tout, les arguments donnés dans I2c), s' appliquent entièrement de la même façon.
 - c) Pour $(u,v) \to b(u,v)$, les premiers arguments pour le caractère bilinéaire symétrique et le caractère positif de la forme quadratique associée sont les mêmes, il faut par contre revoir le caractère défini.

Supposons donc $\int_0^1 (q(t) u^2(t) + p(t) u'^2(t)) dt = 0$ alors on a en particulier que $p(t) u'^2(t)$

est identiquement nul sur [0,1] et comme p(t) > 0 sur [0,1], on en déduit que u'(t) = 0 sur [0,1], de sorte que u(t) = u(0) = 0 sur [0,1], autrement dit u = 0 fonction nulle. cqfd.

3°) a) Il s' agit de prouver que
$$\forall v \in H$$
, $\left| \int_0^1 f(t) \, v(t) \, dt \right| \leq \gamma \sqrt{\int_0^1 \left(v^2(t) + v'^2(t) \right) dt}$. Or on a: $\forall v \in H$, $\left| \int_0^1 f(t) \, v(t) \, dt \right| \leq \sqrt{\int_0^1 f^2(t) \, dt} \, \sqrt{\int_0^1 v^2(t) \, dt}$.

Posons alors $\gamma = \sqrt{\int_0^1 f^2(t) dt}$ on a à fortiori :

$$\forall v \in H, \quad \left| \int_0^1 f(t) \, v(t) \, dt \right| \leq \gamma \sqrt{\int_0^1 \left(v^2(t) + v'^2(t) \right) dt} \quad \text{soit } \forall v \in H, \quad \left| L(v) \right| \leq \gamma \left\| v \right\|.$$

b) Il s' agit de prouver cette fois que : $\forall (u, v) \in H^2$,

$$\left| \int_0^1 (q(t) u(t) v(t) + p(t) u'(t) v'(t)) dt \right| \le \delta \sqrt{\int_0^1 (u^2(t) + u'^2(t)) dt} \sqrt{\int_0^1 (v^2(t) + v'^2(t)) dt}$$

Or on sait que

$$|b(u,v)| \le \sqrt{b(u,u)} \sqrt{b(v,v)} = \sqrt{\int_0^1 (q(t) u^2(t) + p(t) u'^2(t)) dt} \sqrt{\int_0^1 (q(t) v^2(t) + p(t) v'^2(t)) dt}$$
Soit: $|b(u,v)| \le \sqrt{\sup(p_1,q_1)} ||u|| \sqrt{\sup(p_1,q_1)} ||v||$ et finalement:

$$|b(u,v)| \le \delta ||u|| ||v|| \text{ avec } \delta = \sup(p_1,q_1) > 0.$$

4°) **a**) Montrons que : $\forall v \in H$ on a $\forall x \in [0,1]$ $v^2(x) \le x \int_0^1 v'^2(t) dt$.

Cela revient à prouver que $|v(x)| \le \sqrt{x} \sqrt{\int_0^1 v'^2(t) dt}$.

Or
$$|v(x)| = \left| \int_0^x v'(t) dt \right| \le \sqrt{\int_0^x dt} \sqrt{\int_0^x v'^2(t) dt}$$
 d'après I2c) d'où

$$|v(x)| \le \sqrt{x} \sqrt{\int_0^x v'^2(t) dt}$$
 et à fortiori $|v(x)| \le \sqrt{x} \sqrt{\int_0^1 v'^2(t) dt}$ cqfd.

b) On a :

$$\|v\|^2 = \int_0^1 \left(v^2(t) + v'^2(t)\right) dt \le \int_0^1 \left(t \int_0^1 v'^2(u) du\right) dt + \int_0^1 v'^2(t) dt \le \left[\int_0^1 t dt + 1\right] \int_0^1 v'^2(t) dt.$$

soit
$$\|v\|^2 \le \frac{3}{2} \int_0^1 v'^2(t) dt$$
 et par suite : $p_0 \|v\|^2 \le \frac{3}{2} \int_0^1 p_0 v'^2(t) dt \le \frac{3}{2} \int_0^1 p(t) v'^2(t) dt$

et à fortiori :
$$p_0 ||v||^2 \le \frac{3}{2} \int_0^1 (q(t) v^2(t) + p(t) v'^2(t)) dt = \frac{3}{2} b(v, v)$$
.

Conclusion:
$$\forall v \in H$$
, $p_0 ||v||^2 \le \frac{3}{2} b(v, v)$.

5°) Soient u_1 et u_2 des fonctions de H vérifiant $\forall v \in H$, $b(u_1, v) = L(v) = b(u_2, v)$. On a alors $\forall v \in H$, $b(u_1, v) - b(u_2, v) = b(u_1 - u_2, v) = 0$ et en particulier pour $v = u_1 - u_2$ on aura $b(u_1 - u_2, u_1 - u_2) = 0$ ce qui assure que $u_1 - u_2 = 0$ puisque b est un produit scalaire. Rq: Seule l'égalité $\forall v \in H$, $b(u_1, v) = b(u_2, v)$ est importante pour conclure. Il n'y a pas besoin que ces quantités soient égales à L(v). Je crois qu'il y a ici un début de mélange avec

l'existence d'un $u \in H$; $\forall v \in H$, b(u,v) = L(v) qui est le résultat que dans un espace préhilbertien réel, toute forme linéaire est associée au produit scalaire avec un vecteur.

6°) **a**) Soit $G = \{ u \in C^0([0,1], R) ; u(0) = u(1) = 0, u C^1 \text{ par moreaux sur } [0,1] \}$ Définition :

On dit qu' une fonction f est de classe C^1 par morceaux sur [0,1] s' il existe une subdivision de [0,1], $x_0 = 0 < x_1 < ... < x_n = 1$ telle que la restriction f_i de f à chaque intervalle $]x_i, x_{i+1}[$ peut se prolonger en une fonction \tilde{f}_i de classe C^1 sur $[x_i, x_{i+1}]$

Notons qu' une fonction appartenant à G, possède de plus la propriété d' être continue sur [0,1]. On peut alors définir :

$$\langle u, v \rangle = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} \left(u(t) v(t) + u'(t) v'(t) \right) dt$$
 et de même :

$$b(u,v) = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (q(t) u(t) v(t) + p(t) u'(t) v'(t)) dt$$

b) $b(v,v) = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (q(t) v^2(t) + p(t) v'^2(t)) dt = 0$ nécessite en particulier que v'(t) = 0 sur x_i, x_{i+1} (cf chaque intégrale de la somme doit être nulle) donc v doit être constante sur x_i, x_{i+1} . Mais alors, la continuité de v sur x_i, x_i fait que x_i, x_i et de proche en proche x_i, x_i et de proche en proche x_i, x_i fait que x_i, x_i et de proche en proche x_i, x_i fait que x_i, x_i et de proche en proche x_i, x_i fait que x_i, x_i

III. Equation de Sturm-Liouville

Soit la recherche des solutions de classe C^2 sur [0,1] de :

$$\forall x \in [0,1], -\frac{d}{dx}(p(x)u'(x)) + q(x)u(x) = f(x)$$
 (1) avec de plus $u(0) = u(1) = 0$ (2)

1°) On se place dans le cas $p(x) = e^{-\alpha x}$ $\alpha \neq 0$ réel, q(x) = 0 et $f(x) = -2n_0\pi \cos(2n_0\pi x)$.

 $n_0 \in N^*$.

On a alors l'équation $-\frac{d}{dx}\left(e^{-\alpha x}\ u'(x)\right) = -2n_0\pi\cos(2n_0\pi\ x)$ qui fournit dans un premier temps : $e^{-\alpha x}\ u'(x) = \sin(2n_0\pi\ x) + \lambda$ soit $u'(x) = [\sin(2n_0\pi\ x) + \lambda]e^{\alpha x}$ d'où une expression deu est

de la forme : $\frac{\lambda}{\alpha}e^{\alpha x} + (a\sin(2n_0\pi x) + b\cos(2n_0\pi x))e^{\alpha x} + \mu$ et on doit avoir :

$$\begin{cases} 2n_0\pi \ a + \alpha \ b = 0 \\ \alpha \ a - 2n_0\pi \ b = 1 \end{cases} \text{ on obtient : } \qquad a = \frac{\alpha}{4n_0^2\pi^2 + \alpha^2} \qquad b = -\frac{2n_0\pi}{4n_0^2\pi^2 + \alpha^2} \,.$$

Il reste à déterminer les deux constantes au moyen des conditions u(0) = u(1) = 0 qui donnent :

$$u(0) = \frac{\lambda}{\alpha} - \frac{2n_0\pi}{4n_0^2\pi^2 + \alpha^2} + \mu = 0 \qquad u(1) = \frac{\lambda}{\alpha}e^{\alpha} - \frac{2n_0\pi}{4n_0^2\pi^2 + \alpha^2}e^{\alpha} + \mu = 0 \text{ soit :}$$

$$\lambda = \frac{2n_0\pi\alpha}{4n_0^2\pi^2 + \alpha^2}$$
 $\mu = 0$. Conclusion, la solution cherchée est :

$$u(x) = \frac{e^{\alpha x}}{4n_0^2\pi^2 + \alpha^2} \left[2n_0\pi \left(1 - \cos(2n_0\pi x) \right) + \alpha \sin(2n_0\pi x) \right]$$
 ou encore sous une autre forme

$$u(x) = \frac{2e^{\alpha x} \sin(n_0 \pi x)}{4n_0^2 \pi^2 + \alpha^2} \left[2n_0 \pi \sin(n_0 \pi x) + \alpha \cos(n_0 \pi x) \right]$$

2°) Soit u une solution du problème (1), (2), montrons que $\forall v \in H$, b(u,v) = L(v).

 $b(u,v) = \int_0^1 (q(t) u(t) v(t) + p(t) u'(t) v'(t)) dt$. Faisons une intégration par parties pour

$$A = \int_0^1 p(t) u'(t) v'(t) dt. \text{ On pose}: \begin{cases} w(t) = p(t) u'(t) & w'(t) = \frac{d}{dt} (p(t) u'(t)) dt \\ s'(t) = v'(t) & s(t) = v(t) \end{cases}$$

$$A = \left[p(t) \, u'(t) \, v(t) \right]_0^1 + \int_0^1 -\frac{d}{dt} \left(p(t) \, u'(t) \right) v(t) \, dt = 0 + \int_0^1 \left(f(t) - q(t) \, u(t) \right) v(t) \, dt \text{ de sorte que}$$

$$\forall v \in H \,, \ b(u, v) = \int_0^1 f(t) \, v(t) \, dt = L(v) \,.$$

D' après II5, on sait qu' il y a au plus une fonction $\in H$ vérifiant $\forall v \in H$, b(u,v) = L(v). On prouve ici qu' il y en bien une, c' est la solution dar du problème (1), (2).

- **3**°) On pose pour tout élément $v \in H$, $J(v) = \frac{1}{2}b(v,v) L(v)$ et soit u l' unique solution dans H de $\forall v \in H$, b(u,v) = L(v).
 - a) Pour $w \in H$ calculons

$$J(u+w) = \frac{1}{2}b(u+w,u+w) - L(u+w) = \frac{1}{2}[b(u,u+w) + b(w,u+w)] - L(u+w) \text{ soit}$$

$$J(u+w) = \frac{1}{2}b(u,u) - L(u) + b(u,w) + \frac{1}{2}b(w,w) - L(w) = J(u) + J(w) + L(w).$$

D' où pourw = v - u, $J(u) = J(v) - \left[J(v - u) + L(v - u)\right] = J(v) - \frac{1}{2}b(v - u, v - u)$ ce qui prouve bien que $\forall v \in H$, $J(u) \leq J(v)$.

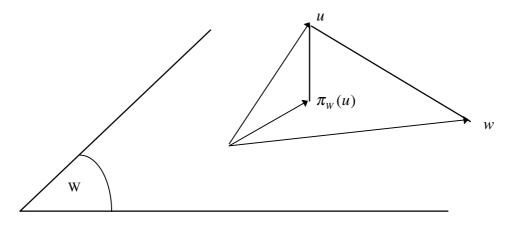
b) Réciproquement, soit $u_0 \in H$; $\forall v \in H$, $J(u_0) \le J(v)$.

$$\begin{split} J(u_0+\lambda w)&=\frac{1}{2}b(u_0+\lambda w,u_0+\lambda w)-L(u_0+\lambda w) \text{ soit} \\ J(u_0+\lambda w)&=\frac{1}{2}\Big[\lambda^2b(w,w)+2\lambda b(u_0,w)+b(u_0,u_0)\Big]-L(u_0)-\lambda L(w) \\ J(u_0+\lambda w)&=\frac{1}{2}\lambda^2b(w,w)+\lambda\big(b(u_0,w)-L(w)\big)+\frac{1}{2}b(u_0,u_0)-L(u_0) \text{ d' où :} \\ J(u_0+\lambda w)-J(u_0)&=\frac{1}{2}\lambda^2b(w,w)+\lambda\big(b(u_0,w)-L(w)\big) \text{ ce qui prouve que le polynome du deuxième degré } \frac{1}{2}\lambda^2b(w,w)+\lambda\big(b(u_0,w)-L(w)\big) \text{ garde un signe constant positif quand } \lambda\in R\,. \end{split}$$
 On en déduit que $\Delta=\big(b(u_0,w)-L(w)\big)^2\leq 0$ donc en fait cette quantité est nulle et donc :

On en déduit que $\Delta = (b(u_0, w) - L(w))^2 \le 0$ donc en fait cette quantité est nulle et donc : $\forall w \in H, \ b(u_0, w) = L(w).$

On retiendra que u, unique solution de $\forall v \in H$, b(u,v) = L(v) dans H est l'unique fonction de H réalisant le minimum de J sur H.

4°) Soit W un sous espace de G de dimension finie d et de base $(\varphi_i)_{1 \le i \le d}$. Soit π_W la projection orthogonale sur W pour le produit scalaire b.



La formule demandée est la propriété classique de la projection orthogonale sur un sous espace. $u=\pi_{_W}(u)+v \ \text{ avec } \ v=u-\pi_{_W}(u) \ \text{ qui est orthogonal à } \ W \ \text{ de sorte que, pour } \ w\in W \ \text{ on a :}$ $b(w-u,w-u)=b(w-\pi_{_W}(u)-v,w-\pi_{_W}(u)-v)=b(w-\pi_{_W}(u),w-\pi_{_W}(u))+b(v,v) \ \text{ et donc } \ b(w-u,w-u)=b(w-\pi_{_W}(u),w-\pi_{_W}(u))+b(\pi_{_W}(u)-u,\pi_{_W}(u)-u) \ \text{ ce qui fait que }$ $\forall w\in W \ , \quad b(\pi_{_W}(u)-u,\pi_{_W}(u)-u)\leq b(w-u,w-u) \ .$

- **b)** Soit $u_W = \pi_W(u)$, montrons que $\forall v \in W$, $b(u_W, v) = L(v)$. En effet, soit $v \in W$, $b(u_W, v) = b(u + u_W - u, v) = b(u, v) + 0 = L(v)$. cqfd.
 - Réciproquement, soit $u_0 \in W$; $\forall v \in W$, $b(u_0,v) = L(v) = b(u,v)$. Montrons que $u_0 = u_W$.

Pour cela soit $(\psi_i)_{1 \le i \le d}$ une base orthonormée de W . Dans une telle base,

$$u_{W} = \sum_{i=1}^{d} b(u, \psi_{i}) \psi_{i} = \sum_{i=1}^{d} L(\psi_{i}) \psi_{i} \text{ et } u_{0} = \sum_{i=1}^{d} b(u_{0}, \psi_{i}) \psi_{i} = \sum_{i=1}^{d} L(\psi_{i}) \psi_{i} \text{ et donc}:$$

$$u_{0} = u_{W} \cdot \text{cqfd}.$$

c) Soit $(\alpha_1,...,\alpha_d)$ les composantes de u_W dans la base $(\varphi_i)_{1 \le i \le d}$.

$$\begin{split} u_W &= \sum_{j=1}^d \alpha_j \varphi_j \text{ . Or } \forall i \in \left\{1,...,d\right\}, \quad b(u_W,\varphi_i) = L(\varphi_i) \text{ et donc les } \alpha_j \text{ sont solutions du} \\ \text{système } \sum_{i=1}^d b(\varphi_i,\varphi_j) \, \alpha_j = L(\varphi_i) \quad i = 1,...,d \; . \end{split}$$

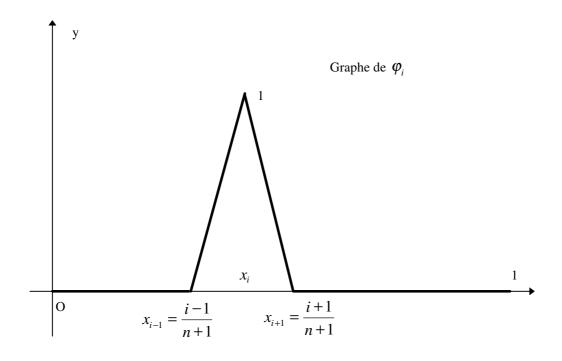
On peut donner deux arguments pour assurer que ce système est de Cramer:

- * C' est un système de d équations à d inconnues dont on sait qu' il admet une solution unique.
- * Le déterminant de ce système est le déterminant de la forme quadradique, restriction de b à W relativement à la base $(\varphi_i)_{1 \le i \le d}$. Ce déterminant est non nul et donc le système est de Cramer.

IV.Approximation de la solution u

Notons que les fonctions φ_i sont assez mal définies quant à leur domaine de définition. Nous les considérerons comme étant définies sur [0,1]; (mais le "pour tout entier naturel i, $x_i = ih$ " peut troubler un peu!)

1°) a) Prenons donc comme définition de φ_i , $\varphi_i(x) = \begin{cases} 1 - \frac{|x - x_i|}{h} & \text{si} \quad x \in [x_{i-1}, x_{i+1}] \\ 0 & \text{si} \quad x \in [0,1] \setminus [x_{i-1}, x_{i+1}] \end{cases}$. Le graphe est immédiat.



Les fonctions φ_i sont bien continues sur [0,1], de classe C^1 par morceaux sur [0,1] et vérifient $\varphi_i(0) = \varphi_i(1) = 0$ donc ce sont des éléments de G.

b) Soit
$$W_n = Vect(\varphi_1,...\varphi_n)$$

On a de manière évidente $\varphi_i(x_j) = \delta_{i,j}$ de sorte que si on pose $\varphi = \sum_{i=1}^n t_i \varphi_i$, on a :

$$\varphi(x_j) = t_j$$
. On retient $\forall i \in \{1,...,n\}, \ \varphi(x_i) = t_i$.

La famille $\left(\pmb{\varphi}_i \right)_{1 \leq i \leq n}$ est par définition une famille génératrice de W_n .

Montrons que c'est une famille libre.

Pour cela, soit la combinaison linéaire $\sum_{i=1}^{n} t_i \varphi_i = 0$, fonction identiquement nulle sur [0,1],

alors $\forall x \in [0,1]$, $\sum_{i=1}^{n} t_i \varphi_i(x) = 0$ et donc en particulier pour $x = x_i$ ce qui fournit $t_i = 0$.

cqfd.

- c) Si $|j-i| \ge 2$ $\varphi_i \varphi_j = 0$ en tout point de [0,1]. Il en est de même pour $\varphi_i \varphi_j = 0$ et par conséquent $b(\varphi_i, \varphi_j) = \int_0^1 0 \, dt = 0$
- $\mathbf{2}^{\circ}$) a) Il reste à calculer les quantités $b(\varphi_i, \varphi_i)$ et $b(\varphi_{i+1}, \varphi_i)$ puisque $b(\varphi_i, \varphi_j) = 0$ pour $|j-i| \ge 2$

•
$$b(\varphi_i, \varphi_i) = \int_{\frac{i-1}{n+1}}^{\frac{i+1}{n+1}} \frac{e^{-\alpha x}}{\left(\frac{1}{n+1}\right)} dx = \frac{(n+1)^2}{\alpha} \left(e^{-\frac{\alpha(i-1)}{n+1}} - e^{-\frac{\alpha(i+1)}{n+1}}\right) \text{ soit }:$$

$$b(\varphi_i, \varphi_i) = \frac{2(n+1)^2}{\alpha} e^{-\frac{\alpha i}{n+1}} sh(\frac{\alpha}{n+1}).$$

•
$$b(\varphi_i, \varphi_{i+1}) = \int_{\frac{n+1}{n+1}}^{\frac{i+1}{n+1}} - \frac{e^{-\alpha x}}{\left(\frac{1}{n+1}\right)} dx = \frac{(n+1)^2}{\alpha} \left(e^{-\frac{\alpha(i+1)}{n+1}} - e^{-\frac{\alpha i}{n+1}}\right) \text{ soit }:$$

$$b(\varphi_i, \varphi_{i+1}) = -\frac{2(n+1)^2}{\alpha} e^{-\frac{\alpha(i+\frac{1}{2})}{n+1}} sh \frac{\alpha}{2(n+1)}.$$

b) Pour n = 2 on a :

$$\begin{vmatrix} b(\varphi_1, \varphi_1) & b(\varphi_1, \varphi_2) \\ b(\varphi_1, \varphi_2) & b(\varphi_2, \varphi_2) \end{vmatrix} = \frac{18^2}{\alpha^2} \begin{vmatrix} e^{-\frac{\alpha}{3}} sh \frac{\alpha}{3} & -e^{-\frac{\alpha}{2}} sh \frac{\alpha}{6} \\ -e^{-\frac{\alpha}{2}} sh \frac{\alpha}{6} & e^{-\frac{2\alpha}{3}} sh \frac{\alpha}{3} \end{vmatrix} = \frac{18^2}{\alpha^2} e^{-\alpha} \left(sh^2 \frac{\alpha}{3} - sh^2 \frac{\alpha}{6} \right)$$
soit encore:
$$\frac{18^2}{\alpha^2} e^{-\alpha} sh^2 \frac{\alpha}{6} \left(4ch^2 \frac{\alpha}{6} - 1 \right) > 0.$$

3°) Soit
$$w_n = \sum_{i=1}^n u(x_i) \varphi_i$$
.

$$\mathbf{a)} \left(\int_{y}^{t} u''(z) \, dz \right) = u'(t) - u'(y) \text{ puis } \int_{x_{i-1}}^{x_{i}} \left(u'(t) - u'(y) \right) dy = u'(t)(x_{i} - x_{i-1}) - u(x_{i}) + u(x_{i-1}).$$
Et enfin $\frac{1}{h} \int_{x_{i-1}}^{x} \left[h \, u'(t) - \left(u(x_{i}) - u(x_{i-1}) \right) \right] dt = u(x) - u(x_{i-1}) + \frac{1}{h} (x_{i-1} - x) \left(u(x_{i}) - u(x_{i-1}) \right)$
soit encore $I = u(x) + \frac{u(x_{i-1}) - u(x_{i})}{h} x - u(x_{i-1}) - \frac{x_{i-1} u(x_{i-1}) - (x_{i} - h) u(x_{i})}{h}$ que

l' on peut encore écrire sous la forme

$$I = u(x) + \frac{u(x_{i-1}) - u(x_i)}{h} x - u(x_{i-1}) - u(x_i) - \frac{x_{i-1}u(x_{i-1}) - x_iu(x_i)}{h}$$
Or pour $x \in [x_{i-1}, x_i]$, $w_n(x) = u(x_{i-1}) \varphi_{i-1}(x) + u(x_i) \varphi_i(x)$, c' est à dire:
$$w_n(x) = u(x_{i-1}) \left[1 - \frac{x - x_{i-1}}{h} \right] + u(x_i) \left[1 - \frac{x_i - x}{h} \right]$$
 soit:
$$w_n(x) = u(x_{i-1}) + u(x_i) - \frac{x}{h} \left(u(x_{i-1}) - u(x_i) \right) + \frac{x_{i-1}u(x_{i-1}) - x_iu(x_i)}{h}$$
 de sorte que

 $u(x) - w_n(x) = u(x) + \frac{u(x_{i-1}) - u(x_i)}{h} x - u(x_{i-1}) - u(x_i) - \frac{x_{i-1}u(x_{i-1}) - x_iu(x_i)}{h} = I \cdot \text{cqfd}.$

b) On a:
$$|u(x) - w_n(x)| \le \frac{1}{h} \int_{x_{i-1}}^{x_i} \left(\int_{x_{i-1}}^{x_i} \left(\int_{x_{i-1}}^{x_i} |u''(z)| dz \right) dy \right) dt$$
. On utilise I2c
$$|u(x) - w_n(x)| \le \frac{1}{h} \int_{x_{i-1}}^{x_i} \left(\int_{x_{i-1}}^{x_i} \sqrt{\int_{x_{i-1}}^{x_i} dz} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) dz} dy \right) dt \text{ soit}$$

$$|u(x) - w_n(x)| \le \frac{1}{h} \int_{x_{i-1}}^{x_i} \left(\int_{x_{i-1}}^{x_i} \sqrt{h} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) dz} dy \right) dt = \frac{1}{\sqrt{h}} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) dz} h^2 \text{ soit enfin:}$$

$$|u(x) - w_n(x)| \le h^{\frac{3}{2}} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) dz} .$$

$$\mathbf{c}) \ u'(x) - w'_n(x) = \frac{1}{h} \int_{x_{i-1}}^{x_i} \left(\int_{y}^{x} u''(z) \, dz \right) dy \text{ et on a donc :}$$

$$\left| u'(x) - w'_n(x) \right| \le \frac{1}{h} \int_{x_{i-1}}^{x_i} \left(\int_{x_{i-1}}^{x_i} \left| u''(z) \right| \, dz \right) dy \le \frac{1}{h} \int_{x_{i-1}}^{x_i} \left(\sqrt{\int_{x_{i-1}}^{x_i} dz} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) \, dz} \right) dy \text{ soit}$$

$$\left| u'(x) - w'_n(x) \right| \le \frac{1}{\sqrt{h}} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) dz} h \text{ soit enfin} : \left| u'(x) - w'_n(x) \right| \le h^{\frac{1}{2}} \sqrt{\int_{x_{i-1}}^{x_i} u''^2(z) dz} .$$

 $\mathbf{4}^{\circ}) \text{ On a : } \|u - w_n\|^2 = \int_0^1 \left((u - w_n)^2(t) + (u' - w_n')^2(t) \right) dt = \sum_{i=1}^{n+1} \int_{x_{i-1}}^{x_i} \left((u - w_n)^2(t) + (u' - w_n')^2(t) \right) dt$ $\|u - w_n\|^2 \le (h^3 + h) \sum_{i=1}^{n+1} \int_{x_{i-1}}^x \left(\int_{x_{i-1}}^{x_i} u''^2(z) dz \right) dt = (h^4 + h^2) \sum_{i=1}^{n+1} \int_{x_{i-1}}^{x_i} u''^2(z) dz \text{ soit finalement}$ $\|u - w_n\|^2 \le (h^4 + h^2) \int_0^1 u''^2(z) dz \text{ et donc } \|u - w_n\| \le h \sqrt{1 + h^2} \left(\int_0^1 u''^2(z) dz \right)^{\frac{1}{2}}.$ $\text{Or } \sqrt{1 + h^2} \le \sqrt{1 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{5}}{2} \text{ car pour } n \ge 1, \quad \frac{1}{n+1} \le \frac{1}{2}. \text{ Dès lors, on a :}$ $\|u - w_n\| \le h \frac{\sqrt{5}}{2} \left(\int_0^1 u''^2(z) dz \right)^{\frac{1}{2}}.$

Conclusion : w_n converge vers u dans le préhilbertien H, \langle , \rangle .

_____FIN _____